ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
D. Elbèze, D. van Houtte, E. Delchambre
Fusion Science and Technology | Volume 75 | Number 5 | July 2019 | Pages 405-411
Technical Paper | doi.org/10.1080/15361055.2019.1603534
Articles are hosted by Taylor and Francis Online.
In the Reliability, Availability, Maintainability, and Inspectability (RAMI) engineering approach used in nuclear fusion research, criticality identifies the failure modes that have the greatest impact on the availability of the studied system. Criticality is expressed as the product of the occurrence level with the severity level of failure modes. The analytical calculation shows that this formulation is equivalent to their availability provided that the duty cycle of basic functions is introduced to adjust the occurrence and the scales of occurrence and severity are homogeneous.
To consolidate the results obtained with a Reliability Block Diagram analysis, we performed a probabilistic study using an advanced Monte Carlo simulation code: the Primavera® Quantitative Schedule Risk Analysis. This method associates failure modes with conditional activities in a schedule and provides the density distribution of failures and tornado graphs to identify the highest criticality failures.
Statistical tests were performed for two operational systems, and we showed that the criticality evaluated with the RAMI approach was in good agreement with the results of the other methods. Thus, in many cases, the analytical formulas can be used during the Failure Mode, Effects, and Criticality Analysis to quickly assess availability by using a spreadsheet.