ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Yasunori Iwai, Yuki Edao, Rie Kurata, Kanetsugu Isobe
Fusion Science and Technology | Volume 75 | Number 5 | July 2019 | Pages 399-404
Technical Paper | doi.org/10.1080/15361055.2019.1600932
Articles are hosted by Taylor and Francis Online.
A detritiation system (DS) is required to remove tritium from the atmosphere of a nuclear containment in any extraordinary situations. Realization of a DS that does not require heating of a catalyst reactor for tritium oxidation and frequent switching operation of adsorption columns for tritiated vapor collection will greatly contribute to the improvement of fusion safety. Concerning the catalyst reactor, it has been demonstrated that tritium can be oxidized at room temperature without any heating by the developed hydrophobic catalyst. To achieve a high tritium conversion efficiency for detritiation, it has already been revealed that suppression of production of tritiated hydrocarbons by hydrogenation reactions as side reactions of tritium oxidation in a catalyst reactor is the key issue to be solved. We have to pay special attention to ethylene among hydrocarbons because ethylene is easily tritiated by reaction of hydrogenation. In this study, complete combustion of ethylene at room temperature in the catalyst reactor is proposed as a measure to suppress the formation of tritiated hydrocarbons. Catalytic combustion characteristics of hydrocarbons were obtained, and the change in the ignition temperature by a change in each design parameter of the catalyst was demonstrated. Concerning noble metal species, platinum is superior to palladium due to less susceptibility to water vapor. The smaller the particle size of noble metal is, the higher the activity is, but because it is more susceptible to water vapor, the particle size of noble metal can be optimized. It was suggested that there is an optimum value for the pore size of the catalytic support.