ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Hitoshi Tamura, Nagato Yanagi, Takuya Goto, Junichi Miyazawa, Teruya Tanaka, Akio Sagara, Satoshi Ito, Hidetoshi Hashizume
Fusion Science and Technology | Volume 75 | Number 5 | July 2019 | Pages 384-390
Technical Paper | doi.org/10.1080/15361055.2019.1603041
Articles are hosted by Taylor and Francis Online.
The conceptual design of a helical fusion reactor was studied at the National Institute for Fusion Science in collaboration with other universities. Two types of the force free helical reactor (FFHR) are FFHR-d1 and FFHR-c1. FFHR-d1 is a self-ignition demonstration reactor that operates with a major radius of 15.6 m at a magnetic field intensity of 4.7 T. FFHR-c1 is a compact subignition reactor that aims to realize steady electrical self-sufficiency. Compared to FFHR-d1, FFHR-c1 has a magnetic field intensity of 7.3 T and a geometrical scale of 0.7. The location of the superconducting coils in both types of FFHR is based on that of the Large Helical Device (LHD). LHD has a major radius of 3.9 m. According to the design of LHD, the deformation must be within the required value to compensate for the accuracy of the magnetic field. According to this concept, the magnet support structure of LHD was fabricated using thick Type 316 stainless steel to impart sufficient rigidity. Thus, the stress of the magnet system of LHD is sufficiently below the permissible stress. In the case of FFHR, from the viewpoint of the reactor, a large access port is required for the maintenance of the in-vessel components. The mechanical design of the support structure is conceptualized by considering the basic thickness of the material and residual aperture space by referencing the mechanical analysis results. Details of the design concepts of LHD and FFHR-d1/FFHR-c1 as well as the results of mechanical analyses are introduced in this paper.