ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Kenji Tobita, Ryoji Hiwatari, Yoshiteru Sakamoto, Youji Someya, Nobuyuki Asakura, Hiroyasu Utoh, Yuya Miyoshi, Shinsuke Tokunaga, Yuki Homma, Satoshi Kakudate, Noriyoshi Nakajima, the Joint Special Design Team for Fusion DEMO
Fusion Science and Technology | Volume 75 | Number 5 | July 2019 | Pages 372-383
Technical Paper | doi.org/10.1080/15361055.2019.1600931
Articles are hosted by Taylor and Francis Online.
This paper summarizes the evolution of Japanese DEMO design studies in a retrospective manner by highlighting efforts to resolve critical design issues on DEMO. Japan is currently working on the conceptual study of a steady-state DEMO (JA DEMO) with a major radius Rp of 8.5 m and fusion power Pfus of 1.5 to 2 GW based on water-cooled solid breeding blanket with pressurized water reactor water condition (290ºC to 325ºC, 15.5 MPa). Such a lower Pfus allows to find realistic design solutions for divertor heat removal. Recognizing that divertor heat removal is one of the most challenging issues on DEMO, the divertor design has been carried out in different approaches, including numerical divertor plasma simulation, magnetic configurations, heat sink design, etc. It is noteworthy that the latest divertor simulation led to a design window allowing divertor heat removal of the peak heat flux of <10 MW/m2. The breeding blanket (BB) design has been concentrated on simplification of the internal structure and pressure tightness of the BB casing against the in-box loss-of-coolant accident. Due to a large amount of radioactive waste generated in periodic replacement of in-vessel components, downsizing of waste-related facilities has come to be regarded as a significant design issue. A possible waste management for reducing temporary waste storage was proposed, and its impact on the plant layout was assessed.