ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
E. L. Alfonso, R. Q. Gram, D. R. Harding
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 218-228
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A454
Articles are hosted by Taylor and Francis Online.
Cooling thin-walled capsules with a high-pressure deuterium fill is a critical phase of operation for providing cryogenic direct-drive targets. During cooling to 20 K, buckling and burst forces develop due to transient thermal gradients, thermal expansion differences in the materials of the capsule and the permeation cell, and changing permeability of the plastic. This article presents the results of both a steady-state and a transient analysis of the pressure differences across the thin-walled capsule during the cooling process. The steady-state contribution to the pressure difference arises from two sources: (1) the different thermal contractions of the materials that comprise the permeation cell and capsule and (2) the room-temperature volume of gas in the line connecting the permeation cell to the isolation valve. The transient analysis considers the pressure differences across the capsule wall that arise from the changing temperature gradients within the gas during the cooling cycle. Both effects have been taken into account to determine an approach that produces fuel-filled, thin-walled cryogenic targets more rapidly. Currently, capsules are slowly cooled at a rate of 0.1 K/min to prevent their destruction. This process requires over 45 h to complete. The results of the present model suggest a faster cooling program that takes into consideration the induced pressure differences, the permeation occurring at higher temperatures, and the strength of the capsule. The time to cool a filled target can be reduced by 25% while maintaining capsule survival.