ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
PWR Corrosion Control in the Nuclear Industry
As many Pressurized Water Reactors (PWRs) approach or exceed 40 years of operation, maintaining asset integrity under aging infrastructure, tight outage schedules, and strict ALARA (As Low As Reasonably Achievable) mandates is a real challenge.
H. Huang, R. B. Stephens, D. W. Hill, C. Lyon, A. Nikroo, D. A. Steinman
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 214-217
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A453
Articles are hosted by Taylor and Francis Online.
Inertial Confinement Fusion (ICF) shells are mesoscale objects with nano-scale dimensional and nanosurface finish requirements. Currently, the shell dimensions are measured by white-light interferometry and an image analysis method. These two methods complement each other and give a rather complete data set on a single shell. The process is, however, labor intensive. We have developed an automation routine to fully characterize a shell in one shot and perform unattended batch measurement. The method is useful to the ICF program both for production screening and for full characterization. It also has potential for Inertial Fusion Energy (IFE) power plant where half a million shells need to be processed daily.