ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Zongwei Wang, Qi Wang, Xuesen Zhao, Yong Hu, Dangzhong Gao, Jie Meng, Xing Tang, Xiaojun Ma
Fusion Science and Technology | Volume 75 | Number 4 | May 2019 | Pages 308-316
Technical Paper | doi.org/10.1080/15361055.2019.1565855
Articles are hosted by Taylor and Francis Online.
Noncontact radiography is developed to determine the doping concentration of inertial confinement fusion shells based on an improved equivalent absorption method by real-time X-ray imaging. Elements of high atomic number (high-Z)/middle atomic number (mid-Z) are doped into the shells to prevent hot electrons from preheating the fuel and to restrain the growth of hydromechanic instability. In this paper, an improved equivalent absorption model is developed to determine doping concentration by real-time X-ray imaging. Compared to contact radiography (CR) with film imaging, this technique can be used to obtain doping concentrations at different angles as a supplement to the CR method, even if the dynamic range of a charge-coupled device is less than film imaging. Experiments are carried out to determine the doping concentrations of Ge-doped and Si-doped shells. Uncertainties of the results are analyzed, and the expanded uncertainties are approximated to 0.1 at. % (K = 2, confidence factor). The experimental results show that there is a high level of agreement between this method and energy dispersive spectroscopy with the modified model.