ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Niyanth Sridharan, Kevin Field
Fusion Science and Technology | Volume 75 | Number 4 | May 2019 | Pages 264-274
Technical Paper | doi.org/10.1080/15361055.2019.1577124
Articles are hosted by Taylor and Francis Online.
Advanced manufacturing (AM) is a disruptive manufacturing process often referred to as “the next industrial revolution” because of its ability to fabricate components with complex geometries and site-specific materials and properties. While other industries, like automotive, aerospace, and fossil-fired power companies, are adopting and evaluating AM processes, the nuclear industry, including the fusion materials community, has been somewhat slow to capitalize on the seemingly beneficial aspects of AM. To address this gap, Oak Ridge National Laboratory is evaluating candidate AM techniques to fabricate nuclear-relevant materials including ferritic-martensitic (FM) steels. This paper discusses the development of a road map for AM approaches for FM steels. Specifically, the connection among alloy composition, additive processes, processing conditions, and postprocessing and the resulting microstructure using both wire-based and powder-based directed energy deposition techniques is detailed. Finally, strategies to develop specialized alloys for additive manufacturing are outlined.