ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Weston M. Stacey
Fusion Science and Technology | Volume 75 | Number 4 | May 2019 | Pages 245-250
Technical Paper | doi.org/10.1080/15361055.2018.1506626
Articles are hosted by Taylor and Francis Online.
This paper combines the older neoclassical gyroviscous model for toroidal viscosity in the plasma core, which is based on an axisymmetric magnetic field and obtains reasonable agreement with experiment for toroidal rotation in the plasma core but not in edge plasma, with recent models for neoclassical toroidal viscosity (NTV) based on nonaxisymmetric “perturbation” magnetic field components present primarily in the edge plasma to obtain a composite toroidal viscosity model for toroidal velocity calculations in the tokamak core and edge plasma. This combination is facilitated by the fact that the same form of “drag frequency” representation of the viscous torque used in many of the new (NTV) torque models arising from toroidally nonaxisymmetric perturbation magnetic fields that are present mostly in the plasma edge can also be used to represent the old neoclassical toroidal viscous torques arising from toroidally axisymmetric magnetic fields.