ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
K. Sathyanarayana, S. V. Kulkarni, Amit Patel, Pujita Bhatt, Alpesh Vala, Hiren Mewada, Keyur Mahant
Fusion Science and Technology | Volume 75 | Number 3 | April 2019 | Pages 234-243
Technical Note | doi.org/10.1080/15361055.2018.1557984
Articles are hosted by Taylor and Francis Online.
The impact of geometric tolerances of the mode converters on the microwave performance of the respective mode converters is studied. It is used as a guiding principle for stipulating the fabrication tolerances on various high-power microwave components. To carry out the simulation studies, Microwave Studio- Computer Simulation Technology software has been used. All the mode converters and transmission line components have been designed and benchmarked using simulation studies. The TE-03 to TE-02 (TE-mn where m and n are radial and azimuthal variation of fields) mode converter is taken as an example. The predicted microwave performance with estimated geometric tolerances is elucidated. Details of the same are available in the various microwave performance plots. Similar simulation studies have been carried out on the other mode converters. The results of the same are highlighted and summarized. Further, the microwave performance of these high-power components with respect to the fabrication tolerances on the internal diameter is also explored and highlighted. It has been found that by and large the cumulative mechanical tolerances on the total length, structural profile inside the mode converter, radius of the mode converter, and other mechanical dimensions are stringent. Based on the simulation studies, cumulative mechanical tolerances beyond approximately ±100 µm during fabrication are not preferred. The aim to obtain the finished product based on the guidelines from simulation studies has been the main theme of the exercise.