ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
M. Y. Isaev, V. M. Leonov, S. Y. Medvedev
Fusion Science and Technology | Volume 75 | Number 3 | April 2019 | Pages 218-225
Regular Technical Paper | doi.org/10.1080/15361055.2018.1562315
Articles are hosted by Taylor and Francis Online.
Properties of toroidal Alfvén eigenmodes (TAEs), driven by neutral beam injection (NBI) hot ions, are described for the tokamak T-15 under construction in the Kurchatov Institute to test a possible influence on the beam and plasma particle losses. The T-15 baseline scenario with a 10-s flat-top 2 MA current stage, 6-MW NBI plus 6 MW of electron cyclotron resonance (ECR) heating is computed with the ASTRA code. The spatial structure and the frequencies of different TAE modes with the toroidal indexes n = 2 to 8 have been obtained with the ideal magnetohydrodynamic KINX code. The bulk plasma Landau damping, linear growth rates, and nonlinear evolution of the TAE mode amplitudes driven by the NBI ions have been computed with the VENUS code. Our numerical estimations for the T-15 TAE modes are compared with experimental and theoretical results for the DIII-D and NSTX tokamaks.