ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Leif Holmlid
Fusion Science and Technology | Volume 75 | Number 3 | April 2019 | Pages 208-217
Technical Paper | doi.org/10.1080/15361055.2018.1546090
Articles are hosted by Taylor and Francis Online.
Fusion power generators employing muon-catalyzed nuclear fusion can be developed using a new type of laser-driven muon generator. Results using this generator have been published, and those data are now used to derive the possible fusion power using this generator. Muon-catalyzed fusion has been studied for 60 years, and the results found in such studies are used here to determine the possible power output. Since the muon source gives complex mixtures of mesons and leptons, which have very different interactions with the measuring equipment, the number of negative muons formed is not easily found exactly, but reasonable values based on numerous published experiments with different methods are used to predict the energy output. With deuterium-tritium as fuel, a fusion power generator employing the novel muon generator could give more than 1 MW thermal power. The thermal power using pure deuterium as fuel may be up to 220 kW initially: It will increase with time up to over 1 MW due to the production of tritium in one reaction branch. The power required for running a modern laser and the muon generator is estimated to be of the order of 100 W, thus giving a total energy gain of more than 10 000. The harmful radiation from such fusion power generators is mainly in the form of neutrons from the fusion reactions. Thus, thick radiation shields are necessary as for almost all other fusion concepts. This means that medium-scale thermal fusion power generators of the muon-catalyzed fusion type may become available within a relatively short time.