ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
DOE prepares for transition of Savannah River Site management
Personnel from the Department of Energy’s Office of Environmental Management and the National Nuclear Security Administration recently gathered to discuss plans for the upcoming transfer of landlord responsibility for the Savannah River Site in South Carolina.
K. S. Han, B. H. Park, A. Y. Aydemir, J. Seol
Fusion Science and Technology | Volume 75 | Number 2 | February 2019 | Pages 137-147
Technical Paper | doi.org/10.1080/15361055.2018.1554391
Articles are hosted by Taylor and Francis Online.
The Deal Two Equilibrium (DTEQ) code solves the Grad-Shafranov (GS) equation for magnetohydrodynamics equilibrium in the axisymmetric toroidal geometry using the deal.II finite element library. In this paper, we introduce DTEQ that can solve the GS equation both linearly and nonlinearly. The linear solution obtained from this code is verified by comparing with a known analytic solution of the linear GS equation. For the nonlinear solution, DTEQ requires two input profiles, p(ψ) and F(ψ), to be specified as a function of the normalized minor radius ρ. The pressure profile p(ψ) is specified based on Thomson scattering, charge exchange spectroscopy data, and an energetic particle pressure model. The toroidal field profile F(ψ) is obtained from our model that makes the diamagnetic current play a significant role when the poloidal beta βp is greater than one. With these two input profiles, the nonlinear GS equation can be solved using Picard iteration within the plasma boundary from EFIT. Using this newly developed code, we obtain several meaningful results that show its validity. The calculated poloidal current density is very large in the transport barrier due to the diamagnetic current, and the characteristics of the Pfirsch-Schlüter current appear in the toroidal current density. In addition, the results obtained from this code agree well with those from EFIT, and the calculated safety factor values in the center are well correlated with the sawtooth activity in the discharge.