ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
Fusion Science and Technology
Latest News
Vogtle-3 achieves full power output
The Vogtle expansion project’s Unit 3 reactor has attained 100 percent energy output—the first time it has reached its maximum expected output of approximately 1,100 MWe, Georgia Power announced yesterday.
Yuxin Chai, Xingui Zhou, Huayu Zhang, Yumin Zhang
Fusion Science and Technology | Volume 75 | Number 2 | February 2019 | Pages 112-119
Technical Paper | doi.org/10.1080/15361055.2018.1533620
Articles are hosted by Taylor and Francis Online.
Silicon carbide (SiC) fiber–reinforced SiC matrix (SiCf/SiC) composites, employing two SiC fibers, KD-I and KD-II, respectively, were fabricated by the precursor infiltration and pyrolysis process. A pyrocarbon coating was used as the fiber-matrix interface. In addition, the effects of heat treatment on the properties of the SiC fibers and SiCf/SiC composites were investigated. Results revealed marginal performance degradation of the KD-I and KD-II SiC fibers after heat treatment at 1100°C for 1 h. However, heat treatment at 1400°C for 1 h led to the decrease in the single-filament tensile strength of the KD-I and KD-II SiC fibers by 50.2% and 10.1%, respectively. In addition, the flexural strength of the SiCf/SiC composites, which were fabricated using the KD-I and KD-II SiC fibers, decreased by 49.6% and 15.9%, respectively. The difference in the composition of the KD-I and KD-II SiC fibers demonstrated that the SiC fibers and SiCf/SiC composites decreased by varying degrees.