ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
T. E. Gebhart, D. Shiraki, J. Baldzuhn, L. R. Baylor, S. J. Meitner
Fusion Science and Technology | Volume 75 | Number 2 | February 2019 | Pages 89-97
Technical Paper | doi.org/10.1080/15361055.2018.1541399
Articles are hosted by Taylor and Francis Online.
Future long-pulse magnetic confinement fusion reactors will require density and isotopic mixture control using steady-state repeating pellet injectors. For high-energy density burning plasmas, pellet velocities of 1 km/s and above will be required for sufficient plasma penetration to achieve high fueling efficiency. Currently, steady-state repeating injection systems utilize cryogenic extruder systems to produce an extrusion of solid deuterium or deuterium-tritium. In repeating light gas gun injectors, the solid extrusion is cut and simultaneously loaded into a barrel. Once loaded, a fast operating gas valve delivers a high pressure burst of gas to accelerate the pellet down the barrel and into the machine. This process takes ~10 ms to achieve. Adequate gas pumping of the extruder exhaust and injection line propellant gas collection chambers is necessary for optimal operation of the pellet fueling system. Excess solid from the extruder sublimates in an exhaust chamber. The gas pressure in the extruder exhaust chamber must remain low to maintain low heating loads on the cooling mechanism (cryorefrigerators or liquid helium flow) and to reduce thermal conduction to the extrusion. Pumping the injection line chambers is necessary to limit propellant gas flow into the machine. A numerical simulation code was created to predict temporal pumping performance for these repeating pellet injection systems. This paper outlines the methods and assumptions used to create this model and compares results to the pellet injection system currently employed on DIII-D, the steady-state pellet injection system planned for the Wendelstein 7-X, and a brief analysis of the ITER conceptual pellet fueling system.