ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Yoshitaka Mori, Yasuhiko Nishimura, Katsuhiro Ishii, Ryohei Hanayama, Yoneyoshi Kitagawa, Takashi Sekine, Yasuki Takeuchi, Nakahiro Satoh, Takashi Kurita, Yoshinori Kato, Norio Kurita, Toshiyuki Kawashima, Osamu Komeda, Tatsumi Hioki, Tomoyoshi Motohiro, Atsushi Sunahara, Yasuhiko Sentoku, Eisuke Miura, Akifumi Iwamoto, Hitoshi Sakagami
Fusion Science and Technology | Volume 75 | Number 1 | January 2019 | Pages 36-48
Technical Paper | doi.org/10.1080/15361055.2018.1499393
Articles are hosted by Taylor and Francis Online.
The injection and engagement of pellets using laser beam irradiation is one of the key technologies to realize a laser-driven inertial fusion energy (IFE) reactor. We irradiated ultra-intense laser (11 TW: 0.6 J/110 fs 2 beams with a focal intensity of 510 W/cm) in counter configuration on flying 1-mm-diameter deuterated polystyrene beads beyond 600 pellets on an average at 1 Hz and 10 min per cycle for 4 years. An injection system delivers pellets with free-fall that consists of a header for pellet delivery by disk rotation and a detection unit for synchronizing the motion of a pellet for laser engagement in time. During laser irradiation, the free-falling pellet placement was at Δx = 1 mm, Δy = 0.4 mm on a plane perpendicular to the falling direction, and Δz = 0.1 mm in the falling direction at the moment of laser irradiation. Using a two-directional probe shadowgraph system, we succeeded in aligning the pellet-falling position with a laser engagement probability greater than 70%; the probability improved from the previous experiments wherein the probabilities were less than 20%. As a result, the shot probability is 27% for gamma-ray generation resulting from ultra-intense laser-matter interactions and 22% for detection of signals corresponding to fusion neutrons with a maximum yield of 4 10 n/shot. The neutron reaction induced from an integrated system of pellet injector and laser is a decisive step in the research and development of an IFE reactor.