ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Yuefeng Qiu, Ulrich Fischer
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 406-411
Technical Paper | doi.org/10.1080/15361055.2018.1500847
Articles are hosted by Taylor and Francis Online.
Global neutron flux and dose maps for the test cell (TC) of the IFMIF-DONES (International Fusion Materials Irradiation Facility–DEMO Oriented NEutron Source) have been calculated applying the advanced variance reduction tool ADVANTG. The neutronics model of the TC has been updated to the current IFMIF-DONES design of the target assembly, the high flux test module, and the lithium quench tank as well as the TC surrounding rooms. A weight-window (WW) mesh has been produced using ADVANTG with the well-configured setups for IFMIF-DONES conditions. This WW mesh has been adjusted to achieve reasonably good statistics for the global flux mesh tally. It is concluded that the thickness of the beam upstream and lateral wall can be reduced by 0.5 m without strongly affecting the shielding performance. The neutron streaming through the gaps of the shielding plugs to the access cell above the TC requires local shielding to allow frequent access during operation.