ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Hesham Khater, Sandra Brereton, Lucile Dauffy, Jim Hall, Luisa Hansen, Soon Kim, Bertram Pohl, Shiva Sitaraman, Jerome Verbeke, Mitchell Young
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 387-405
Technical Paper | doi.org/10.1080/15361055.2018.1471961
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility at Lawrence Livermore National Laboratory is the world’s largest and most energetic laser system for inertial confinement fusion. The NIF is designed to perform shots with varying fusion yield (up to 20 MJ or 7.1 × 1018 neutrons per shot). A large number of diagnostic instruments are present inside the target chamber (TC) and target bay (TB) during shots. The gamma dose rates due to neutron activation are estimated at various decay times following the high-yield (20-MJ) shots. Several components, like the snout assemblies of the diagnostic instrument manipulators and target positioners are inserted inside the TC, close to the target during the shot. These components represent major sources of gamma decay after retraction outside the TC. Five days after a 20-MJ shot, dose rates near the highly activated (retracted) parts are on the order of 1 mSv/h and dose rates within the TB outside the TC but at distance from the retracted components drop to about 50 to 70 μSv/h. The dose is dominated by decay of 24Na (T1/2 = 14.95 h) and waiting for two additional days drops the dose rates significantly. Seven days following a 20-MJ shot, dose rates in the immediate vicinity of the retracted components drop to <0.2 mSv/h and the general ambient dose rates within the TB (away from retracted components) near the TC drop to <10 μSv/h. Dose rates at much larger distances from the TC (near TB wall) are an order of magnitude lower. Detailed radiation transport simulations are performed to create detailed dose rate maps for all floors inside the TB. The maps are used to estimate worker stay-out times following shots before entry is permitted into the TB.