ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse, Nuclear Transport Solutions to codevelop HALEU transport package
Nuclear Transport Solutions and Westinghouse have signed a strategic agreement to codevelop NTS’s Pegasus—a transport package for high-assay, low-enriched uranium fuel.
The companies signed the agreement at the British Embassy in Washington, D.C., on January 22, taking what Westinghouse called “an important step in making HALEU available to enable advanced nuclear energy in the U.S. and UK.”
Bethany R. Colling, T. Eade, M. R. Gilbert, J. Naish, S. Zheng
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 330-339
Technical Paper | doi.org/10.1080/15361055.2018.1496690
Articles are hosted by Taylor and Francis Online.
Computational models created for neutronics assessment through solid geometry conversion are often specific to the analysis being performed. The use of unstructured mesh geometry has the potential to reduce the build time of MCNP models, reduce inaccuracies introduced through flux averaging over different components and material mixing, and make use of computer-aided design models that can also be suitable for other types of analysis. In this paper three neutronics methods were investigated for suitability in performing a radioactive waste assessment of a fusion demonstration reactor. The methods included the conventional cell-based approach, a superimposed structured mesh, and the use of a recently developed capability with unstructured mesh geometry. It was concluded that an unstructured mesh approach has the potential to be an important tool for assessing radioactive waste to inform reactor and component design.