ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC could improve decommissioning trust fund oversight, OIG reports
The Nuclear Regulatory Commission could do more to improve its oversight of decommissioning trust funds, according to an assessment by the NRC’s Office of Inspector General. In particular, the assessment, which was conducted by Crowe LLP on behalf of the OIG, identified four areas related to developing policies and procedures, workflows, and other support that would enhance NRC oversight of the trust funds.
Bethany R. Colling, T. Eade, M. R. Gilbert, J. Naish, S. Zheng
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 330-339
Technical Paper | doi.org/10.1080/15361055.2018.1496690
Articles are hosted by Taylor and Francis Online.
Computational models created for neutronics assessment through solid geometry conversion are often specific to the analysis being performed. The use of unstructured mesh geometry has the potential to reduce the build time of MCNP models, reduce inaccuracies introduced through flux averaging over different components and material mixing, and make use of computer-aided design models that can also be suitable for other types of analysis. In this paper three neutronics methods were investigated for suitability in performing a radioactive waste assessment of a fusion demonstration reactor. The methods included the conventional cell-based approach, a superimposed structured mesh, and the use of a recently developed capability with unstructured mesh geometry. It was concluded that an unstructured mesh approach has the potential to be an important tool for assessing radioactive waste to inform reactor and component design.