ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Stephen C. Wilson, Scott W. Mosher, Katherine E. Royston, Charles R. Daily, Ahmad M. Ibrahim
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 288-302
Technical Paper | doi.org/10.1080/15361055.2018.1483687
Articles are hosted by Taylor and Francis Online.
Fusion energy systems present increasingly significant computational challenges as they grow in size and complexity. Once constructed, ITER will be a full-size nuclear facility with highly complicated structures and support systems, with an array of scientific equipment in close proximity to the neutron-emitting deuterium-tritium plasma. Characterization of shutdown dose rate (SDDR) distributions caused by the neutron activation of these structures is important to the final design and full-power operation of the device. This work summarizes the theoretical basis and parallel implementation of the Multi-Step Consistent Adjoint-Driven Importance Sampling (MS-CADIS) method designed specifically for highly efficient execution of multistep activation problems. Fusion SDDR benchmark problems have been solved with these new tools, and the results have been compared to experimental and other computational results to establish their validation basis.