ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
Recap: The 2023 ANS Winter Meeting
The American Nuclear Society’s 2023 Winter Meeting and Expo opened on November 12, and its packed opening plenary the next day generated a lot of buzz. Featured speakers included West Virginia senators Shelley Moore Capito and Joe Manchin as well as Nuclear Regulatory Commission chair Christopher Hanson. They each addressed top issues facing the nuclear enterprise to a full house of more than 1,000 members of the wider nuclear community.
Qiang-Hua Lei, De-Li Luo, Huan Wang, Yi-Fu Xiong, Guang-Hui Zhang, Wen-Qing Wu
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 252-262
Technical Note | doi.org/10.1080/15361055.2018.1464815
Articles are hosted by Taylor and Francis Online.
For hydrogen isotope enrichment/separation applicable to fusion fuel processing, environmental tritium safety confinement, or recovery of tritium from heavy water reactors, a hydrogen displacement adsorption process system is recommended using molecular sieve 5A as the separation material. For simulation and optimization of the process, mathematical models and a solving method are provided to calculate the breakthrough curves during the displacement adsorption, in which various parameters including pressure drop and mass transfer coefficients are allowed to be changeable. Based on the calculated results, the effects of the column size, the flow rate, and the outlet pressure on the enrichment factor, the recovery ratio and the separation ability of the column are comprehensively analyzed. The conclusions have some theoretical guiding significance for the development of hydrogen isotope separation by the displacement adsorption method.