ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Qiang-Hua Lei, De-Li Luo, Huan Wang, Yi-Fu Xiong, Guang-Hui Zhang, Wen-Qing Wu
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 252-262
Technical Note | doi.org/10.1080/15361055.2018.1464815
Articles are hosted by Taylor and Francis Online.
For hydrogen isotope enrichment/separation applicable to fusion fuel processing, environmental tritium safety confinement, or recovery of tritium from heavy water reactors, a hydrogen displacement adsorption process system is recommended using molecular sieve 5A as the separation material. For simulation and optimization of the process, mathematical models and a solving method are provided to calculate the breakthrough curves during the displacement adsorption, in which various parameters including pressure drop and mass transfer coefficients are allowed to be changeable. Based on the calculated results, the effects of the column size, the flow rate, and the outlet pressure on the enrichment factor, the recovery ratio and the separation ability of the column are comprehensively analyzed. The conclusions have some theoretical guiding significance for the development of hydrogen isotope separation by the displacement adsorption method.