ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Zhilin Chen, Masao Matsuyama, Shuming Peng, Yang Yang, Yu Li, Shenghan Cheng
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 246-251
Technical Note | doi.org/10.1080/15361055.2018.1462086
Articles are hosted by Taylor and Francis Online.
Tritium release behavior in a tungsten sample after exposing to tritium ions with energy about 200 eV created by glow discharge has been studied by both β-ray–induced X-ray spectrometry (BIXS) and imaging plate (IP). The tungsten sample was heated stepwise in a vacuum vessel at temperatures from 400 to 1000 K in experiments, and results obtained from both BIXS and IP measurements showed that the amount of tritium absorbed on the sample surface decreased more than 97% after heating at 800 K. Both intensity and shape of the measured X-ray spectrum have been specified to estimate the change of the tritium depth profile after each heat treatment. Besides, the Monte Carlo Stopping and Range of Ions in Matter (SRIM) code has been introduced to calculate the initial tritium depth profile just after being irradiated by glow discharge. Analysis shows that tritium atoms locate around 3 nm in depth before annealing, and tritium distribution becomes uniform in the near-surface layers (around several nanometers) gradually after heat treatment. At about 800 K, the relative tritium concentration in the near-surface layers reaches its maximum value compared with tritium in the deeper part of the tungsten sample. Then more and more tritium diffuses deeper into the sample as the temperature increases.