ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2021)
February 9–11, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Former NRC chairs issue vaccine timeline recommendation to CDC
Five former chairmen of the U.S. Nuclear Regulatory Commission—Stephen Burns, Allison Macfarlane, Nils Diaz, Richard Meserve, and Dale Klein—signed a letter to José Romero, Arkansas health secretary and chair of the Centers for Disease Control and Prevention (CDC) immunization advisory committee, requesting that the advisory committee update its recommendation for COVID-19 vaccine allocation guidance for the energy workforce (including nuclear energy workers).
Currently, the CDC has four phases for the COVID-19 vaccine rollout. Those phases are numbered:
W. M. Stacey
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 198-210
Technical Note | dx.doi.org/10.1080/15361055.2017.1416250
Articles are hosted by Taylor and Francis Online.
Theoretical analysis and interpretation of experimental measurements indicate the need to extend the fluid theory used in the tokamak plasma edge to include ion orbit loss of thermalized ions and to retain (mainly) electromagnetic pinch forces in the momentum balance in order to derive transport equations which conserve particles, energy, and momentum. The features of such an extended steady-state fluid theory have been derived from first principles in several papers and are summarized herein.