ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
Jin-Li Cao, Wei Xiao, Qi Cao, Bing-Ling He
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 177-185
Technical Paper | doi.org/10.1080/15361055.2017.1416245
Articles are hosted by Taylor and Francis Online.
Experiments observed preferential He bubble formation in carbide precipitates M23C6 during low-temperature He irradiation in ferritic-martensitic steels. However, the process and mechanism of He trapping in M23C6 present a challenge to measure. Using density functional theory, we have systematically investigated He distribution, migration, and accumulation in Cr23C6. The formation energies of interstitial and substitutional He in Cr23C6 are 3.50 and 3.16 eV, respectively, remarkably lower than those in Fe matrix. The higher solubility of He in Cr23C6 makes it an He-trapping center in martensitic steels. On the other hand, the migration barrier of interstitial He in Cr23C6 is 2.58 eV, about 2.52 eV higher than that in bulk Fe. Furthermore, we only find a very weak attraction potency for substitutional-interstitial He pair, 0.25 eV, and even no binding trend for interstitial-interstitial or substitutional-substitutional He pairs, which suggests that it is more difficult for He atoms to move and less powerful driving force to accumulate in Cr23C6 than those in Fe matrix. Our results indicate that the trapping effect results from a lower charge density zone in Cr23C6, and predict that the small and dense Cr23C6 particles may hinder bubble growth at the initial stage, which can improve the resistance to irradiation void swelling.