ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Jin-Li Cao, Wei Xiao, Qi Cao, Bing-Ling He
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 177-185
Technical Paper | doi.org/10.1080/15361055.2017.1416245
Articles are hosted by Taylor and Francis Online.
Experiments observed preferential He bubble formation in carbide precipitates M23C6 during low-temperature He irradiation in ferritic-martensitic steels. However, the process and mechanism of He trapping in M23C6 present a challenge to measure. Using density functional theory, we have systematically investigated He distribution, migration, and accumulation in Cr23C6. The formation energies of interstitial and substitutional He in Cr23C6 are 3.50 and 3.16 eV, respectively, remarkably lower than those in Fe matrix. The higher solubility of He in Cr23C6 makes it an He-trapping center in martensitic steels. On the other hand, the migration barrier of interstitial He in Cr23C6 is 2.58 eV, about 2.52 eV higher than that in bulk Fe. Furthermore, we only find a very weak attraction potency for substitutional-interstitial He pair, 0.25 eV, and even no binding trend for interstitial-interstitial or substitutional-substitutional He pairs, which suggests that it is more difficult for He atoms to move and less powerful driving force to accumulate in Cr23C6 than those in Fe matrix. Our results indicate that the trapping effect results from a lower charge density zone in Cr23C6, and predict that the small and dense Cr23C6 particles may hinder bubble growth at the initial stage, which can improve the resistance to irradiation void swelling.