ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Duke Energy submits an ESP application to the NRC
Following up on an October announcement on plans to invest more heavily in nuclear power, Duke Energy closed out 2025 by submitting an early site permit application to the Nuclear Regulatory Commission. This ESP application is for a site near the Belews Creek Steam Station, a coal and natural gas plant in Stokes County, N.C., where Duke has been pursuing a new nuclear project for two years.
L. M. Reusch, P. Franz, D. J. Den Hartog, J. A. Goetz, M. D. Nornberg, P. VanMeter
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 167-176
Technical Note | doi.org/10.1080/15361055.2017.1404340
Articles are hosted by Taylor and Francis Online.
Soft–X-ray (SXR) brightness measurements contain information on a number of physics parameters in fusion plasmas; however, it is nearly impossible to extract the information without modeling. A validated forward model is therefore necessary for the accurate interpretation of SXR measurements and will be critical in the burning plasma era, where medium- and high-Z impurities are ever present. The Atomic Data and Analysis Structure (ADAS) database is a powerful interpretive tool that is extensively used to model and predict atomic spectra, level populations, and ionization balance for fusion plasmas. These predictions are in good agreement with experimental measurements. However, continuum radiation in the X-ray range, while also modeled in ADAS, has not been rigorously verified or tested against experimental data. We therefore performed a systematic comparison of ADAS to a simplified model called PFM. PFM only calculates continuum radiation but shows good agreement with experimental data when only continuum radiation is present. ADAS and the simplified model agree to within 1% to 2% indicating that ADAS is calculating continuum radiation correctly. We have also begun a validation of SXR brightness calculations from ADAS. The SXR brightness measurements modeled by ADAS agree well with experimental measurements from an extreme where the signal is dominated by line radiation continuously through another extreme where the signal is dominated by continuum emission. While this validation work is preliminary, it strongly suggests that ADAS accurately models the physics that lead to SXR radiation.