ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
M. D. Nornberg, D. J. Den Hartog, L. M. Reusch
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 144-153
Technical Paper | doi.org/10.1080/15361055.2017.1387008
Articles are hosted by Taylor and Francis Online.
We have created a forward model for charge-exchange impurity density measurements that incorporates neutral beam attenuation measurements self-consistently for the purpose of determining the ion-effective charge Zeff. The model is constructed within an integrated data analysis framework to include a self-consistent calculation of neutral beam attenuation due to multiple impurity species into the measurement of a single impurity density. The model includes measurements of the beam Doppler-shift spectrum and shine-through particle flux to determine the neutral beam particle density which is attenuated by ion collisions. Synthetic data are generated from the diagnostic forward model using statistical and calibration uncertainties. These “noisy” data are used in the analysis to evaluate how accurately Zeff is determined. Methods of experimental design are employed to calculate the information gained from different diagnostic combinations. The analysis shows that while attenuation measurements alone do not provide a unique impurity density measurement in the case of a multispecies inhomogeneous plasma, they do provide an effective measurement of the Zeff profile and place constraints on the impurity density profiles.