ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
M. D. Nornberg, D. J. Den Hartog, L. M. Reusch
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 144-153
Technical Paper | doi.org/10.1080/15361055.2017.1387008
Articles are hosted by Taylor and Francis Online.
We have created a forward model for charge-exchange impurity density measurements that incorporates neutral beam attenuation measurements self-consistently for the purpose of determining the ion-effective charge Zeff. The model is constructed within an integrated data analysis framework to include a self-consistent calculation of neutral beam attenuation due to multiple impurity species into the measurement of a single impurity density. The model includes measurements of the beam Doppler-shift spectrum and shine-through particle flux to determine the neutral beam particle density which is attenuated by ion collisions. Synthetic data are generated from the diagnostic forward model using statistical and calibration uncertainties. These “noisy” data are used in the analysis to evaluate how accurately Zeff is determined. Methods of experimental design are employed to calculate the information gained from different diagnostic combinations. The analysis shows that while attenuation measurements alone do not provide a unique impurity density measurement in the case of a multispecies inhomogeneous plasma, they do provide an effective measurement of the Zeff profile and place constraints on the impurity density profiles.