ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. D. Nornberg, D. J. Den Hartog, L. M. Reusch
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 144-153
Technical Paper | doi.org/10.1080/15361055.2017.1387008
Articles are hosted by Taylor and Francis Online.
We have created a forward model for charge-exchange impurity density measurements that incorporates neutral beam attenuation measurements self-consistently for the purpose of determining the ion-effective charge Zeff. The model is constructed within an integrated data analysis framework to include a self-consistent calculation of neutral beam attenuation due to multiple impurity species into the measurement of a single impurity density. The model includes measurements of the beam Doppler-shift spectrum and shine-through particle flux to determine the neutral beam particle density which is attenuated by ion collisions. Synthetic data are generated from the diagnostic forward model using statistical and calibration uncertainties. These “noisy” data are used in the analysis to evaluate how accurately Zeff is determined. Methods of experimental design are employed to calculate the information gained from different diagnostic combinations. The analysis shows that while attenuation measurements alone do not provide a unique impurity density measurement in the case of a multispecies inhomogeneous plasma, they do provide an effective measurement of the Zeff profile and place constraints on the impurity density profiles.