ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Arizona utilities trio looks to add nuclear power
The top three utilities in Arizona are teaming up to explore opportunities to add nuclear generation facilities in the state.
Arizona Public Service (APS), Salt River Project (SRP), and Tucson Electric Power (TEP) announced in a February 5 news release that they are working together to assess possible sites, including retiring coal plants. The group is looking at possibilities for both small modular reactors—units generating 300 MW or less—and potential large reactor projects, which could generate nearly five times the power.
M. Kostuk, T. D. Uram, T. Evans, D. M. Orlov, M. E. Papka, D. Schissel
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 135-143
Technical Paper | doi.org/10.1080/15361055.2017.1390388
Articles are hosted by Taylor and Francis Online.
For the first time, an automatically triggered, between-pulse fusion science analysis code was run on-demand at a remotely located supercomputer at Argonne Leadership Computing Facility (ALCF, Lemont, Illinois) in support of in-process experiments being performed at DIII-D (San Diego, California). This represents a new paradigm for combining geographically distant experimental and high-performance computing facilities to provide enhanced data analysis that is quickly available to researchers. Enhanced analysis improves the understanding of the current pulse, translating into a more efficient use of experimental resources and quality of the resultant science. The analysis code used here, called SURFMN, calculates the magnetic structure of the plasma using Fourier transform. Increasing the number of Fourier components provides a more accurate determination of the stochastic boundary layer near the plasma edge by better resolving magnetic islands, but requires 26 min to complete using local DIII-D resources, putting it well outside the useful time range for between-pulse analysis. These islands relate to confinement and edge-localized mode suppression, and may be controlled by adjusting coil currents for the next pulse. ALCF has ensured on-demand execution of SURFMN by providing a reserved queue, a specialized service that launches the code after receiving an automatic trigger, and network access from the worker nodes for data transfer. Runs are executed on 252 cores of ALCF’s Cooley cluster and the data are available locally at DIII-D within 3 min of triggering. The original SURFMN design limits additional improvements with more cores; however, our work shows a path forward where codes that benefit from thousands of processors can run between pulses.