ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
M. Kostuk, T. D. Uram, T. Evans, D. M. Orlov, M. E. Papka, D. Schissel
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 135-143
Technical Paper | doi.org/10.1080/15361055.2017.1390388
Articles are hosted by Taylor and Francis Online.
For the first time, an automatically triggered, between-pulse fusion science analysis code was run on-demand at a remotely located supercomputer at Argonne Leadership Computing Facility (ALCF, Lemont, Illinois) in support of in-process experiments being performed at DIII-D (San Diego, California). This represents a new paradigm for combining geographically distant experimental and high-performance computing facilities to provide enhanced data analysis that is quickly available to researchers. Enhanced analysis improves the understanding of the current pulse, translating into a more efficient use of experimental resources and quality of the resultant science. The analysis code used here, called SURFMN, calculates the magnetic structure of the plasma using Fourier transform. Increasing the number of Fourier components provides a more accurate determination of the stochastic boundary layer near the plasma edge by better resolving magnetic islands, but requires 26 min to complete using local DIII-D resources, putting it well outside the useful time range for between-pulse analysis. These islands relate to confinement and edge-localized mode suppression, and may be controlled by adjusting coil currents for the next pulse. ALCF has ensured on-demand execution of SURFMN by providing a reserved queue, a specialized service that launches the code after receiving an automatic trigger, and network access from the worker nodes for data transfer. Runs are executed on 252 cores of ALCF’s Cooley cluster and the data are available locally at DIII-D within 3 min of triggering. The original SURFMN design limits additional improvements with more cores; however, our work shows a path forward where codes that benefit from thousands of processors can run between pulses.