ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
M. Kostuk, T. D. Uram, T. Evans, D. M. Orlov, M. E. Papka, D. Schissel
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 135-143
Technical Paper | doi.org/10.1080/15361055.2017.1390388
Articles are hosted by Taylor and Francis Online.
For the first time, an automatically triggered, between-pulse fusion science analysis code was run on-demand at a remotely located supercomputer at Argonne Leadership Computing Facility (ALCF, Lemont, Illinois) in support of in-process experiments being performed at DIII-D (San Diego, California). This represents a new paradigm for combining geographically distant experimental and high-performance computing facilities to provide enhanced data analysis that is quickly available to researchers. Enhanced analysis improves the understanding of the current pulse, translating into a more efficient use of experimental resources and quality of the resultant science. The analysis code used here, called SURFMN, calculates the magnetic structure of the plasma using Fourier transform. Increasing the number of Fourier components provides a more accurate determination of the stochastic boundary layer near the plasma edge by better resolving magnetic islands, but requires 26 min to complete using local DIII-D resources, putting it well outside the useful time range for between-pulse analysis. These islands relate to confinement and edge-localized mode suppression, and may be controlled by adjusting coil currents for the next pulse. ALCF has ensured on-demand execution of SURFMN by providing a reserved queue, a specialized service that launches the code after receiving an automatic trigger, and network access from the worker nodes for data transfer. Runs are executed on 252 cores of ALCF’s Cooley cluster and the data are available locally at DIII-D within 3 min of triggering. The original SURFMN design limits additional improvements with more cores; however, our work shows a path forward where codes that benefit from thousands of processors can run between pulses.