ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Garrish up for repeat term as DOE’s nuclear energy secretary
Garrish
Theodore “Ted” Garrish—who has spent more than four decades working in nuclear—is President Donald Trump’s nominee to serve as the Department of Energy’s assistant secretary for nuclear energy, or, NE-1.
The nomination was referred to the U.S. Senate’s Committee on Energy and Natural Resources on February 3. Garrish previously held the office from 1987 to 1989 under President Ronald Reagan. Most recently, Kathryn Huff held the NE-1 post, and Michael Goff has served as interim assistant secretary since Huff stepped down in May 2024.
Garrish’s most recent term in public office was as assistant secretary for the Office of International Affairs at the Energy Department, from 2018 to 2021, during Trump’s first term. Supporters say Garrish’s 40-plus years working in the nuclear industry and in nuclear energy oversight positions makes him more than qualified to serve in the DOE office again.
A. Puig Sitjes, M. Jakubowski, A. Ali, P. Drewelow, V. Moncada, F. Pisano, T. T. Ngo, B. Cannas, J. M. Travere, G. Kocsis, T. Szepesi, T. Szabolics, W7-X Team
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 116-124
Technical Paper | doi.org/10.1080/15361055.2017.1396860
Articles are hosted by Taylor and Francis Online.
The Wendelstein 7-X (W7-X) fusion experiment is aimed at proving that the stellarator concept is suitable for a future fusion reactor. Therefore, it is designed for steady-state plasmas of up to 30 min, which means that the thermal control of the plasma-facing components (PFCs) is of vital importance to prevent damage to the device.
In this paper an overview of the design of the Near Real-Time Image Diagnostic System (hereinafter called “the System”) for PFCs protection in W7-X is presented. The goal of the System is to monitor the PFCs with high risk of permanent damage due to local overheating during plasma operations and to send alarms to the interlock system. The monitoring of the PFCs is based on thermographic and video cameras, and their video streams are analyzed by means of graphics processing unit–based computer vision techniques to detect the strike line, hot spots, and other thermal events. The video streams and the detected thermal events are displayed online in the control room in the form of a thermal map and permanently stored in the database. In order to determine the emissivity and maximum temperature allowed, a pixel-based correspondence between the image and the observed device part is required. The three-dimensional geometry of W7-X makes the System particularly sensitive to the spatial calibration of the cameras since hot spots can be expected anywhere, and a full segmentation of the field of view is necessary, in contrast to other regions of interest–based systems. A precise registration of the field of view and a correction of the strong lens distortion caused by the wide-angle optical system are then required.
During the next operation phase the uncooled graphite divertor units will allow the System to be tested without risk of damaging the divertors in preparation for when water-cooled high-heat-flux divertors will be used.