ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
Cs-137 sealed source lost in Western Australia
A rendering of the sealed source capsule’s appearance. (Image: DFES)
Authorities are searching 1,400 kilometers (870 miles) of Australia’s Great Northern Highway, between Perth and the remote town of Newman, for a lost sealed-source capsule containing cesium-137. The source was part of a density gauge used by mining company Rio Tinto at its mining operations in Western Australia.
The Department of Fire and Emergency Services (DFES) of Western Australia reported that the density gauge containing a 6-mm-diameter (0.24-inch-diameter) by 8-mm-height (0.31-inch-height) source capsule was sent by flatbed truck to Perth for repair, leaving Rio Tinto’s Gudai-Darri mine site in Western Australia on January 12 and arriving in Perth on January 16. The package containing the gauge, however, was not inspected until January 25.
Upon opening the package, it was found that the gauge was broken apart with one of four mounting bolts missing. The source itself and all screws on the gauge were also missing. It is assumed that vibrations from the truck broke the gauge apart and allowed the screws and capsule to fall through the bolt hole and away from the truck. DFES said they were notified of the loss on the evening of January 25.
B. A. Grierson, X. Yuan, M. Gorelenkova, S. Kaye, N. C. Logan, O. Meneghini, S. R. Haskey, J. Buchanan, M. Fitzgerald, S. P. Smith, L. Cui, R. V. Budny, F. M. Poli
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 101-115
Technical Paper | doi.org/10.1080/15361055.2017.1398585
Articles are hosted by Taylor and Francis Online.
TRANSP simulations are being used in the OMFIT workflow manager to enable a machine-independent means of experimental analysis, postdictive validation, and predictive time-dependent simulations on the DIII-D, NSTX, JET, and C-MOD tokamaks. The procedures for preparing input data from plasma profile diagnostics and equilibrium reconstruction, as well as processing of the time-dependent heating and current drive sources and assumptions about the neutral recycling, vary across machines, but are streamlined by using a common workflow manager. Settings for TRANSP simulation fidelity are incorporated into the OMFIT framework, contrasting between-shot analysis, power balance, and fast-particle simulations. A previously established series of data consistency metrics are computed such as comparison of experimental versus calculated neutron rate, equilibrium stored energy versus total stored energy from profile and fast-ion pressure, and experimental versus computed surface loop voltage. Discrepancies between data consistency metrics can indicate errors in input quantities such as electron density profile or , or indicate anomalous fast-particle transport. Measures to assess the sensitivity of the verification metrics to input quantities are provided by OMFIT, including scans of the input profiles and standardized postprocessing visualizations. For predictive simulations, TRANSP uses GLF23 or TGLF to predict core plasma profiles, with user-defined boundary conditions in the outer region of the plasma. International Tokamak Physics Activity (ITPA) validation metrics are provided in postprocessing to assess the transport model validity. By using OMFIT to orchestrate the steps for experimental data preparation, selection of operating mode, submission, postprocessing, and visualization, we have streamlined and standardized the usage of TRANSP.