ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Cristina Rea, Robert S. Granetz
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 89-100
Technical Paper | doi.org/10.1080/15361055.2017.1407206
Articles are hosted by Taylor and Francis Online.
Using data-driven methodology, we exploit the time series of relevant plasma parameters for a large set of disrupted and non-disrupted discharges from the DIII-D tokamak with the objective of developing a disruption classification algorithm. We focus on a subset of disruption predictors, most of which are dimensionless and/or machine-independent parameters such as the plasma internal inductance and the Greenwald density fraction , coming from both plasma diagnostics and equilibrium reconstructions. The utilization of dimensionless indicators will facilitate a more direct comparison between different tokamak devices.
In order to eventually develop a robust disruption warning algorithm, we leverage Machine Learning techniques, and in particular, we choose the Random Forests algorithm to explore the DIII-D database. We show the results coming from both binary (disrupted/non-disrupted) and multiclass classification problems. In the latter, the time dependency is introduced through the definition of class labels on the basis of the elapsed time before the disruption (i.e., ‘far from a disruption’, ‘within 350 ms of disruption’, etc.). Depending on the formulation of the problem, overall disruption prediction accuracy up to 90% is demonstrated, approaching 97% when identifying a stable and a disruptive phase for disrupted discharges. The performances of the different Random Forest classifiers are discussed in terms of accuracy, by showing the percentages of successfully detected samples, together with the false positive and false negative rates.