ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
Cs-137 sealed source lost in Western Australia
A rendering of the sealed source capsule’s appearance. (Image: DFES)
Authorities are searching 1,400 kilometers (870 miles) of Australia’s Great Northern Highway, between Perth and the remote town of Newman, for a lost sealed-source capsule containing cesium-137. The source was part of a density gauge used by mining company Rio Tinto at its mining operations in Western Australia.
The Department of Fire and Emergency Services (DFES) of Western Australia reported that the density gauge containing a 6-mm-diameter (0.24-inch-diameter) by 8-mm-height (0.31-inch-height) source capsule was sent by flatbed truck to Perth for repair, leaving Rio Tinto’s Gudai-Darri mine site in Western Australia on January 12 and arriving in Perth on January 16. The package containing the gauge, however, was not inspected until January 25.
Upon opening the package, it was found that the gauge was broken apart with one of four mounting bolts missing. The source itself and all screws on the gauge were also missing. It is assumed that vibrations from the truck broke the gauge apart and allowed the screws and capsule to fall through the bolt hole and away from the truck. DFES said they were notified of the loss on the evening of January 25.
Keisuke Fujii, Ichihiro Yamada, Masahiro Hasuo
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 57-64
Technical Paper | doi.org/10.1080/15361055.2017.1396179
Articles are hosted by Taylor and Francis Online.
Manual uncertainty propagation from possible noise sources has often been adopted for data analysis in many fields of science, including the analysis of Thomson scattering measurement data in fusion plasma science. However, it is not possible to perfectly model all the noise sources and their distributions. In this work, we propose a more data-driven approach for the noise modeling of multichannel measurement systems. We directly modeled the noise distribution by tractable density distributions parameterized with neural networks and trained their weights from a vast amount of measurement data. We demonstrated an application of this method in Thomson scattering measurement data for the Large Helical Device project. This method enabled us to make a realistic inference even without sufficient prior knowledge about the noise.