ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
Keisuke Fujii, Ichihiro Yamada, Masahiro Hasuo
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 57-64
Technical Paper | doi.org/10.1080/15361055.2017.1396179
Articles are hosted by Taylor and Francis Online.
Manual uncertainty propagation from possible noise sources has often been adopted for data analysis in many fields of science, including the analysis of Thomson scattering measurement data in fusion plasma science. However, it is not possible to perfectly model all the noise sources and their distributions. In this work, we propose a more data-driven approach for the noise modeling of multichannel measurement systems. We directly modeled the noise distribution by tractable density distributions parameterized with neural networks and trained their weights from a vast amount of measurement data. We demonstrated an application of this method in Thomson scattering measurement data for the Large Helical Device project. This method enabled us to make a realistic inference even without sufficient prior knowledge about the noise.