ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The DOE picks six HALEU deconverters. What have we learned?
The Department of Energy announced contracts yesterday for six companies to perform high-assay low-enriched uranium (HALEU) deconversion and to transform enriched uranium hexafluoride (UF6) to other chemical forms, including metal or oxide, for storage before it is fabricated into fuel for advanced reactors. It amounts to a first round of contracting. “These contracts will allow selected companies to bid on work for deconversion services,” according to the DOE’s announcement, “creating strong competition and allowing DOE to select the best fit for future work.”
Shin Kajita, Evgeny Veshchev, Maarten De Bock, Robin Barnsley, Manfred Von Hellermann, Michael Walsh
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 37-46
Technical Paper | doi.org/10.1080/15361055.2017.1390389
Articles are hosted by Taylor and Francis Online.
In ITER, reflection of photons on vacuum vessel will make parasitic signals (stray light) for optical diagnostics. In this study, to estimate and mitigate the effect of the stray light in ITER in a systematic manner, a ray transfer matrix was constructed based on ray tracing calculations for a divertor impurity monitor and charge-exchange recombination spectroscopy (CXRS). It is shown that the allocation of the sources around the strike point and the X-point, where the emission is strong, is important for the model used to build the transfer matrix to effectively mitigate the stray light. The origin of the stray light for the core CXRS is investigated, and a case study to subtract the stray light is shown.