ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. A. Rattá, J. Vega, A. Murari
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 13-22
Technical Paper | doi.org/10.1080/15361055.2017.1390390
Articles are hosted by Taylor and Francis Online.
Models that apply machine learning (ML) techniques for disruption prediction have improved detection rates and warning times in JET and other tokamaks. However, these models require an already stored database to develop them. Therefore, a significant problem arises at the time of training ML-based systems for ITER. To tackle this problem, this work computes a genetic algorithm–optimized predictor inspired by a previous study using initially only ASDEX-Upgrade (AUG) data and tested with the wide database of JET. This smaller-to-larger tokamak approach pursues the future extrapolation of this technique to ITER. The outcomes of direct application of a cross predictor resulted in 30.03% false alarms and more than 42% premature alarms, which indicates the need for different input parameters or at least some information about the target device to achieve reasonable performance.
In a second approach, a new model was created with the AUG database plus one disruptive and one nondisruptive pulse of JET. The final cross predictions (over the chronologically first 564 shots after training, 52 of them were disruptive) reached 100% of total detected disruptions (all of them with anticipation times up to 10 ms). The false alarms were 7.42%. The results decayed at the time newer shots were tested. This aging effect is a known phenomenon, and it can be tackled by periodic retraining of the system. As proof of principle, a final predictor was created in an adaptive approach, obtaining in the following 1000 pulses (52 of them disruptive) 91.75% detections with at least 10 ms of warning times and less than 1% false alarms.