ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Jan Wallenius
Fusion Science and Technology | Volume 33 | Number 4 | July 1998 | Pages 456-461
Technical Paper | doi.org/10.13182/FST33-456
Articles are hosted by Taylor and Francis Online.
Transmutation of the radiotoxic isotopes 137Cs and 129I using a muon-catalyzed fusion (CF) neutron source is considered. Extensive Monte Carlo simulations show that each fusion neutron may transmute up to 1.7 radiotoxic nuclei, depending on geometry and choice of material. Further, it is found that chemically confining cesium atoms in the compound Cs2O leads to higher transmutation efficiency for a given volume as compared with pure cesium. Assuming that a minimal requirement for applying transmutation to 137Cs is that the inventory half-life with respect to undergoing transmutation is less than twice the natural half-life T1/2 = 30 yr, the highest transmutation rate in a system consisting of a CF source with a maximum achievable intensity of 5 × 1018 n/s is ~5 kg/yr, at an inventory of 300 kg. For larger inventories, the half-life becomes longer. Hence, it seems difficult to achieve a positive energy balance in the process, in contradiction with results of a previous study.