ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Jyoti Pandey, Bhawna Pandey, H. M. Agrawal, P. V. Subhash, S. Vala, Akhil Sai Aiyyala, Rajnikant Makwana, S. V. Suryanarayana
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 545-551
Technical Note | doi.org/10.1080/15361055.2017.1397485
Articles are hosted by Taylor and Francis Online.
For fusion application, there is a high demand for nuclear data for long-lived radionuclides produced in a neutron environment. Cobolt-60 (t1/2 = 5.3 years) is one of the radionuclides produced in a large amount inside the fusion reactor via different pathways. In this context, the excitation function of 60Co(n, p) and 60Co(n, α) reaction from threshold to 20 MeV has been calculated using TALYS-1.6 in the framework of the Hauser Feshbach statistical model along with preequilibrium effects. Outgoing (proton and alpha) particle energy spectra (dσ/dEp, dσ/dEα) and double-differential cross section (d2σ/dE dΩ) has also been estimated at 14 MeV incident neutron energy. Optimized input parameters used during the model calculation were determined by fitting the (n, p) and (n, α) cross sections to the experimental data for the adjacent stable nuclide 59Co. The activation analysis has also been carried out for 1 kg of stainless steel (SS316) using FISPACT-2007.