ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Gallego and Risch submit ARC Act 2.0 in the Senate
Sens. Jim Risch (R., Idaho) and Ruben Gallego (D., Ariz.) reintroduced the Accelerating Reliable Capacity (ARC) Act in the Senate on February 10.
According to the Department of Energy, it could take up to 10 deployments for a reactor design to become a mature commercial reactor. Getting from the first-of-a-kind (FOAK) to full commercial deployment is challenging, and the risks of higher costs and longer deployment timelines for early nuclear projects create significant uncertainty for investors. The ARC Act is designed to reduce that early deployment risk.
S. Wang, Y. Q. Liu, X. M. Song, G. Y. Zheng, G. L. Xia, L. Li
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 519-532
Technical Paper | doi.org/10.1080/15361055.2017.1404416
Articles are hosted by Taylor and Francis Online.
Systematic, multiple initial value simulations are performed for a toroidal plasma using the recently updated MARS-F code in order to understand how the resistive wall mode (RWM) can be feedback controlled in the presence of control coil voltage saturation and/or sensor noise. The former renders the control nonlinear, thus generally requiring initial value computations for toroidal plasmas. This numerical study complements and confirms the key results from a previously analytic investigation of the RWM feedback with power saturation for a cylindrical plasma [Li et al., Physics of Plasmas, Vol. 19, 012502 (2012)]. Moreover, simulation results reveal a linear trend between the maximum tolerable sensor noise level and the degree of relaxing the control coil voltage saturation requirement, up to a certain level of noise, corresponding to a noise-to-signal ratio of about 25%. Beyond this level, further relaxing the control voltage saturation limit does not lead to increased sensor noise tolerance for the RWM stabilization.