ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Garrish up for repeat term as DOE’s nuclear energy secretary
Theodore “Ted” Garrish—who has spent more than four decades working in nuclear—is President Donald Trump’s nominee to serve as the Department of Energy’s assistant secretary for nuclear energy, or, NE-1.
The nomination was referred to the U.S. Senate’s Committee on Energy and Natural Resources on February 3. Garrish previously held the office from 1987 to 1989 under President Ronald Reagan. Most recently, Kathryn Huff held the NE-1 post, and Michael Goff has served as interim assistant secretary since Huff stepped down in May 2024.
Garrish’s most recent term in public office was as assistant secretary for the Office of International Affairs at the Energy Department, from 2018 to 2021, during Trump’s first term. Supporters say Garrish’s 40-plus years working in the nuclear industry and in nuclear energy oversight positions makes him more than qualified to serve in the DOE office again.
S. K. Combs, L. R. Baylor
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 493-518
Technical Paper | doi.org/10.1080/15361055.2017.1421367
Articles are hosted by Taylor and Francis Online.
High-speed injection of solid fuel was first proposed in 1954 as a possible solution to the problem of transporting fresh fuel across the confining magnetic fields into the plasma of a fusion reactor. While it took a few decades, the use of cryogenic pellets (typically H2 and D2) on fusion experiments became common place; most tokamaks and stellarators are now equipped with a pellet injector(s). These devices operate at low temperatures (~10 to 20 K) and most often use a simple light gas gun to accelerate macroscopic-size pellets (~0.4- to 6-mm diameter) to speeds of ~100 to 1000 m/s. Before the advantages of pellet injection from the magnetic high-field side (HFS) of a tokamak were recognized in 1997, development focused on increasing the pellet speed to achieve deeper plasma penetration and higher fueling efficiency. The HFS injection technique typically dictates slower pellets (~100 to 300 m/s) to survive transport through the curved guide tubes that route the pellets to the plasma from the inside wall of the device. Two other key operating parameters for plasma fueling are the pellet-injection repetition rate and time duration—a single pellet is adequate for some experiments and a steady-state injection rate of up to ~50 Hz is appropriate for others. In addition to plasma fueling, cryogenic pellets have often been used for particle transport and impurity studies in fusion experiments (most often with neon pellets). During the past two decades, a few new applications for cryogenic pellets have been developed and used successfully in plasma experiments: (1) one for edge-localized mode mitigation, (2) one for plasma disruption mitigation (requires large pellets that are shattered before injection into the plasma), and (3) another in which pure argon pellets are used to trigger runaway electrons in the plasma for scientific studies. In this paper, a brief history and the key developments in this technology during the past 25 years are presented and discussed.