ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
J. A. Fooks, L. C. Carlson, P. Fitzsimmons, E. Giraldez, D. N. Kaczala, M. Wei, N. Alexander, M. P. Farrell, J. Betcher, A. Harvey-Thompson, T. Nagayama
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 423-433
Technical Paper | doi.org/10.1080/15361055.2017.1389605
Articles are hosted by Taylor and Francis Online.
The Magnetized Liner Inertial Fusion experimental campaign conducted at the University of Rochester’s Laboratory for Laser Energetics has evolved significantly since its start in 2014. Scientific requirements and OMEGA Extended Performance (EP) system technology both have progressed, resulting in necessary and available updates to the target design. These include, but are not limited to, optimizing target dimensions and aspect ratios to maximize survival at desired pressures; coating target components to improve physics diagnosis; precision-machining diagnostic windows along the axis of the target for enhanced diagnostic views; improving fiducial placement reproducibility and reducing subsequent assembly time by 50%; and implementing gas-pressure transducers on the targets. In addition, target fabrication techniques have changed and advanced, allowing for better target reproducibility and decreased assembly time. To date, 11 variations of targets have been fabricated, with successful target fielding ranging from 1- to 20 atm internal pressure and a maximum survivability of 33 atm.