ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
J. A. Fooks, L. C. Carlson, P. Fitzsimmons, E. Giraldez, D. N. Kaczala, M. Wei, N. Alexander, M. P. Farrell, J. Betcher, A. Harvey-Thompson, T. Nagayama
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 423-433
Technical Paper | doi.org/10.1080/15361055.2017.1389605
Articles are hosted by Taylor and Francis Online.
The Magnetized Liner Inertial Fusion experimental campaign conducted at the University of Rochester’s Laboratory for Laser Energetics has evolved significantly since its start in 2014. Scientific requirements and OMEGA Extended Performance (EP) system technology both have progressed, resulting in necessary and available updates to the target design. These include, but are not limited to, optimizing target dimensions and aspect ratios to maximize survival at desired pressures; coating target components to improve physics diagnosis; precision-machining diagnostic windows along the axis of the target for enhanced diagnostic views; improving fiducial placement reproducibility and reducing subsequent assembly time by 50%; and implementing gas-pressure transducers on the targets. In addition, target fabrication techniques have changed and advanced, allowing for better target reproducibility and decreased assembly time. To date, 11 variations of targets have been fabricated, with successful target fielding ranging from 1- to 20 atm internal pressure and a maximum survivability of 33 atm.