ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
H. Xu, H. Huang, J. Walker, F. H. Elsner, M. P. Farrell
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 408-413
Technical Paper | doi.org/10.1080/15361055.2017.1396180
Articles are hosted by Taylor and Francis Online.
Be:B films were explored as a possible ablator material for use in inertial confinement fusion target capsules. It was found that Be:B forms an amorphous structure near the eutectic composition of 11 to 12 at. % B. It is believed that having an amorphous ablator should be useful in suppressing Rayleigh-Taylor instabilities during compression of the target. As the composition is moved away from the eutectic, an amorphous-to–columnar structure transition was more likely to be observed after some finite thickness of amorphous material had been deposited. Microstructural analysis indicated that this transition involved the nucleation of nanocrystal structures within the amorphous matrix. This nanocrystal nucleation is believed to be due to supersaturation of the dopant atom in the host. An efficient packing analysis is also presented in an effort to explain the most favorable amorphous composition of 11 to 12 at. % B doping observed.