ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
EPRI’s new program aims to strengthen grid resilience
The Electric Power Research Institute has launched a global initiative to prepare future grids by modernizing how the electricity-generating sector detects, anticipates, and responds to emerging risks and manages technological transformation. The nonprofit energy research and development organization intends for the initiative, called Rapid Adaptation of Grid Defense, Analytics, and Resilience (RADAR), to provide a scalable framework, advanced tools, and targeted training for strengthening grid resilience and reliability.
H. Xu, H. Huang, J. Walker, F. H. Elsner, M. P. Farrell
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 408-413
Technical Paper | doi.org/10.1080/15361055.2017.1396180
Articles are hosted by Taylor and Francis Online.
Be:B films were explored as a possible ablator material for use in inertial confinement fusion target capsules. It was found that Be:B forms an amorphous structure near the eutectic composition of 11 to 12 at. % B. It is believed that having an amorphous ablator should be useful in suppressing Rayleigh-Taylor instabilities during compression of the target. As the composition is moved away from the eutectic, an amorphous-to–columnar structure transition was more likely to be observed after some finite thickness of amorphous material had been deposited. Microstructural analysis indicated that this transition involved the nucleation of nanocrystal structures within the amorphous matrix. This nanocrystal nucleation is believed to be due to supersaturation of the dopant atom in the host. An efficient packing analysis is also presented in an effort to explain the most favorable amorphous composition of 11 to 12 at. % B doping observed.