ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
The last days of Hallam
The Hallam nuclear power plant, about 25 miles southwest of Lincoln, Neb., was an important part of the Atomic Energy Commission’s Reactor Power Demonstration Program. But in the end, it operated for only 6,271 hours and generated about 192.5 million kilowatt-hours of electric power during its short, 15-month life.
S. Le Tacon, N. Cermelli, R. Bourdenet, I. Geoffray, C. Chicanne, M. Theobald
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 400-407
Technical Paper | doi.org/10.1080/15361055.2017.1387010
Articles are hosted by Taylor and Francis Online.
High-Z metallic foils including rare-earth (RE) elements are required for some experiments implemented on the Laser Megajoule. A specific process based on physical vapor deposition and laser machining was developed to produce high-Z material foils meeting strict specifications. This process allows pure metallic ultrathin foil fabrication from a few hundred nanometers to several microns of thickness of any high-Z materials. In the case of RE metals sensitive to oxidation, thin foils are buried under aluminum protective layers of about a few hundred nanometers. These metallic thin foils are flat, show thickness uniformity over 95%/cm2, and have roughness of about 10 nm. The foils are opaque to light, have a density similar to bulk material, present an oxygen content of about 1 at. %, and are stable over months under atmospheric conditions.