ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
S. Le Tacon, N. Cermelli, R. Bourdenet, I. Geoffray, C. Chicanne, M. Theobald
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 400-407
Technical Paper | doi.org/10.1080/15361055.2017.1387010
Articles are hosted by Taylor and Francis Online.
High-Z metallic foils including rare-earth (RE) elements are required for some experiments implemented on the Laser Megajoule. A specific process based on physical vapor deposition and laser machining was developed to produce high-Z material foils meeting strict specifications. This process allows pure metallic ultrathin foil fabrication from a few hundred nanometers to several microns of thickness of any high-Z materials. In the case of RE metals sensitive to oxidation, thin foils are buried under aluminum protective layers of about a few hundred nanometers. These metallic thin foils are flat, show thickness uniformity over 95%/cm2, and have roughness of about 10 nm. The foils are opaque to light, have a density similar to bulk material, present an oxygen content of about 1 at. %, and are stable over months under atmospheric conditions.