ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
EPRI’s new program aims to strengthen grid resilience
The Electric Power Research Institute has launched a global initiative to prepare future grids by modernizing how the electricity-generating sector detects, anticipates, and responds to emerging risks and manages technological transformation. The nonprofit energy research and development organization intends for the initiative, called Rapid Adaptation of Grid Defense, Analytics, and Resilience (RADAR), to provide a scalable framework, advanced tools, and targeted training for strengthening grid resilience and reliability.
S. Le Tacon, N. Cermelli, R. Bourdenet, I. Geoffray, C. Chicanne, M. Theobald
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 400-407
Technical Paper | doi.org/10.1080/15361055.2017.1387010
Articles are hosted by Taylor and Francis Online.
High-Z metallic foils including rare-earth (RE) elements are required for some experiments implemented on the Laser Megajoule. A specific process based on physical vapor deposition and laser machining was developed to produce high-Z material foils meeting strict specifications. This process allows pure metallic ultrathin foil fabrication from a few hundred nanometers to several microns of thickness of any high-Z materials. In the case of RE metals sensitive to oxidation, thin foils are buried under aluminum protective layers of about a few hundred nanometers. These metallic thin foils are flat, show thickness uniformity over 95%/cm2, and have roughness of about 10 nm. The foils are opaque to light, have a density similar to bulk material, present an oxygen content of about 1 at. %, and are stable over months under atmospheric conditions.