ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
China launches fusion-focused company
China has established a state-owned fusion energy company, China Fusion Energy Co. (CFEC), as a subsidiary of the China National Nuclear Corporation with the goal of accelerating the commercialization of fusion energy. According to a report by People’s Daily Online, the new company has a registered capital of 15 billion yuan (about $2.1 billion).
Suhas Bhandarkar, Jim Fair, Ben Haid, Evan Mapoles, Jeff Atherton, Cliff Thomas, John Moody, Jeremy Kroll, Abbas Nikroo
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 380-391
Technical Paper | doi.org/10.1080/15361055.2017.1406249
Articles are hosted by Taylor and Francis Online.
Early shots on the National Ignition Facility (NIF) were plagued by the buildup of a considerable mass of extraneous ice on the laser entry hole (LEH) windows, a consequence of condensation of the residual air. This resulted in higher than desired temperatures at the LEH, which combined with the variability of the ice thickness made this a problem that needed a robust solution. In this paper, we describe our work in designing a second thin film that shielded the LEH window from the contaminating ice. The detailed cryogenic considerations required to ensure the proper functioning of this new window were simulated and verified experimentally. The data from numerous subsequent shots showed marked improvement in performance, which made this feature an essential component for all cryogenic NIF targets.