ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Framatome, Ultra Safe partner to manufacture TRISO and FCM fuel
Framatome and Ultra Safe Nuclear announced on January 26 that they intend to form a joint venture to manufacture commercial quantities of tristructural isotropic (TRISO) particles and Ultra Safe’s proprietary fully ceramic microencapsulated (FCM) fuel.
The companies have signed a nonbinding agreement to integrate their resources to bring commercially viable, fourth-generation nuclear fuel to market for Ultra Safe’s micro-modular reactor (MMR) and other advanced reactor designs.
J. S. Jaquez, M. O. Havre, A. Nikroo, S. D. Bhandarkar, M. Wang, B. Stahl, K. Kangas, M. P. Farrell
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 370-379
Technical Paper | doi.org/10.1080/15361055.2017.1387461
Articles are hosted by Taylor and Francis Online.
Research at General Atomics and Lawrence Livermore National Laboratory has been focused on evaluating depleted uranium (DU) hohlraum fabrication over the past 10 years to improve the yield, thereby increasing the availability of DU hohlruams required to support the increased shot rate at the National Ignition Facility. The more straightforward gold (Au) hohlraum fabrication involves four basic steps: mandrel fabrication, electroplating, back machining and milling, and leaching. For Au, the overall fabrication yield of this process approaches 98% [H. Streckert and K. Blobaum, Fusion Sci. Technol., Vol. 63, p. 213 (2013)] Depleted uranium lined hohlraum fabrication, however, requires deposition of a multilayer of thin films after the mandrel fabrication step. These thin film deposition processes have historically proven difficult to execute on a complex cylindrical geometry of a hohlraum, resulting in unacceptable stress-driven delamination, with net yields ranging 20% to 35% [H. L. Wilkens et al., Phys. Plasmas, Vol. 14, 056310 (2007)]. Recent hohlraum design and fabrication process changes, as well as material selections implemented between 2014 and 2016, have improved the fabrication yield to over 60%. These changes are discussed here as well as plans for future improvements.