ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
C. Kong, E. M. Giraldez, J. W. Crippen, H. Huang, M. L. Hoppe, Jr., M. Vu, K. J. Boehm, N. G. Rice, F. H. Elsner, P. Fitzsimmons, M. P. Farrell
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 363-369
Technical Paper | doi.org/10.1080/15361055.2017.1397486
Articles are hosted by Taylor and Francis Online.
Current capsules used at the National Ignition Facility utilize a single-shell design comprised of a single ablator material. Although single-shell designs are currently the standard design, they suffer from several physics disadvantages, such as sensitivity to asymmetries and instabilities. The double shell is a proposed design utilizing a high-Z inner metal shell with a low-Z outer shell that is intended to mitigate the issues associated with typical single-shell designs.
Electroplating is one method that can be utilized to fabricate high-Z metal shells. Au is one particular material that can be electroplated with high density and uniformity. Capsule fill tube assemblies (CFTAs) built from these Au shells have passed all cryogenic leak tests. The shells have a low native surface roughness and are free of voids. Au shells have been successfully fabricated, characterized, and built into CFTAs.