ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
December 2024
Fusion Science and Technology
November 2024
Latest News
Nuclear News 40 under 40
Welcome to the inaugural Nuclear News 40 Under 40! A year in the making, this list was a difficult undertaking for the NN staff, there being so many qualified and enthusiastic candidates to review. The task was further complicated by the great diversity of roles that exist within the nuclear community—from academia to labs and from utilities to government positions. Whatever their specific niche, those selected represent the exceptional talent, vision, and drive that is transforming the nuclear sector across the community. These 40 young professionals have shown remarkable commitment, innovation, and leadership in advancing nuclear science and technology, paving the way for a future in which nuclear power and applications will continue to play a vital role in addressing global challenges.
H. Xu, H. Huang, J. Walker, C. Kong, N. G. Rice, M. P. Mauldin, J. D. Vocke, J. H. Bae, W. Sweet, F. H. Elsner, M. P. Farrell, Y. M. Wang, C. Alford, T. Cardenas, E. Loomis
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 354-362
Technical Paper | doi.org/10.1080/15361055.2017.1387459
Articles are hosted by Taylor and Francis Online.
Double-shell inertial confinement fusion targets represent a unique platform for achieving ignition. They consist of a low-Z outer ablator, a high-Z inner pusher layer, and a low-density foam layer sandwiched in between. There is the possibility that double-shell targets may achieve ignition at lower ion temperatures due to the containment of radiation and conduction losses as well as requiring smaller convergence ratios. We have explored using magnetron sputtering to make the inner high-Z pusher layers and have demonstrated a W-Cr bilayer inner-shell design. An Al-Be mixture was explored as one of the outer ablator materials. This material takes advantage of Al X-ray M-band absorption to reduce preheating and still retain Be high-ablation speeds. Typical commercial Al-Be materials suffer from phase separation. However, by using magnetron sputtering we have been able to demonstrate homogeneous Al-Be ablator coatings. The sputtered material forms with nanosized grains and has demonstrated excellent machinability. As a second type of shell explored, pushered single shells can exploit large density gradients to stabilize Rayleigh-Taylor instabilities during compression. Sharp gradients will have higher ignition yields and larger grading lengths will be more stable. We were able to demonstrate pushered single shells made from W-Be gradient layers with various grading slopes and provide simulated results showing that the grading profiles can be influenced by the coating rates of two components.