ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
M. D. Wittman, M. J. Bonino, D. H. Edgell, C. Fella, D. R. Harding, J. Sanchez
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 315-323
Technical Paper | doi.org/10.1080/15361055.2017.1380496
Articles are hosted by Taylor and Francis Online.
Direct-drive inertial fusion experiments conducted at the Laboratory for Laser Energetics implode 860-μm-diameter, 8-μm-thick glow-discharge polymer (GDP) capsules that have a solid, uniform, 60- to 80-μm-thick layer of an equimolar mixture of deuterium and tritium (DT) on their interior. The DT is permeated through the capsule’s wall up to pressures of 1000 atm in small pressure steps to prevent buckling; this occurs over many hours. The capsule is then cooled, the DT is solidified, and the uniform layer is formed using thermal gradients produced by heat deposited from beta decay of the tritium. Thermal contraction of the capsule from cooling is expected to be ~1% of the diameter. Capsules permeated with DT do not exhibit this contraction and retain their room-temperature diameter after cooling. Sources of error in the imaging system were explored, and a systematic 3 μm over measurement of the diameter was revealed and corrected. However, both GDP capsules permeated with only deuterium and polystyrene capsules permeated with DT do exhibit thermal contraction. The highly cross-linked GDP shell is under compressive stress after fabrication and experiences bond breakage when exposed to high-density DT during permeation. It is speculated that some of this compressive stress is relieved during bond cleavage and the capsule’s wall swells, which counteracts contraction during cooling. In addition, mass spectrometry of the DT gas in the permeation system has revealed the presence of hydrocarbons and other carbon-containing species that increase with time, confirming the radio-degradation of the polymer.